Verilerden yola çıkarak strateji geliştirilmesine yardımcı olan yapay zeka teknolojilerinin gündelik hayatta kullanımının artması beraberinde birçok endişeyi de getirirken, "adil" ve "doğru" veri, söz konusu teknolojinin geleceğinde kritik rol oynuyor.
Öte yandan, yapay zeka ve robotların, gelecekte insanlık için tehdit oluşturabileceği endişeleri de giderek artıyor.
Sahte olduğu ortaya çıksa da sosyal medyada büyük bir hızla yayılan, kendisine kötü davranan sahibinden intikam alan robot videosu ve insansı robot Sophia'nın "İnsanlığı yok edeceğim" açıklaması bu endişeleri gün yüzüne çıkarıyor.
Söz konusu gelişmeler yapay zeka konusunda varılan noktayı gözler önüne sererken, bu teknolojilerin hangi alanlarda ve ne şekilde kullanılacağının geleceğin şekillenmesinde en önemli faktörlerden olacağı belirtiliyor.
Yapay zeka teknolojilerinin gelecekte insanlık için büyük bir umut mu, yoksa beraberinde getireceği tehlikeler açısından bir tehdit mi oluşturacağı ise ülkelerin bu teknolojiyi nasıl konumlandıracağı ile ilişkili olacak. Yapay zeka teknolojisinin temelini oluşturan makine öğrenmesi ise kritik rol oynayacak.
"Mevcut veriler istenmeyen sonuçlar verebilir"
İstanbul Teknik Üniversitesi Öğretim Üyesi ve Yapay Zeka ve Veri Bilimi Uygulama ve Araştırma Merkezi Müdürü Prof. Dr. Gözde Ünal, makinelerin, mevcut verilerden beslenerek öğrendikleri için bazı istenmeyen sonuçlar da verebileceğini söyledi.
Günümüzde makine öğrenmesinde kullanılan çeşitli teknikler olduğunu anlatan Ünal, makine öğrenmesi sistemlerinde belli bir görevi çözmeye yönelik bir performans ölçütü tanımladıklarını, bu ölçütü en iyiye götürecek şekilde sistemin veya modelin parametrelerini güncellediklerini belirtti.
Derin öğrenme
Ünal, makine öğrenmesi tekniklerinin çoğunlukla "derin öğrenme" yöntemlerini kastettiğini vurgulayarak, şöyle konuştu:
"Derin öğrenme, nöronlardan esinlenen basit ama çok katmanlı ve geniş yapay sinir ağları modellerine dayanırken, öğrenmeyi, yani kendisini güncellemeyi algoritmaya girdi olarak sağlanan verilere bakarak yapıyor. Diyelim ki yapay zeka algoritmasının bir kediyi tanımasını sağlamak istiyoruz. Eski sistemlerde kediyi tanıması için kendimiz veya geçmiş istatistiklere bakarak kuralları belirliyorduk.
Örneğin, makine resimdeki cismin şekline bakarak kedi olup olmadığına karar versin gibi... Şimdi ise derin öğrenmeye dayalı sistemlere, kedi olarak etiketlenmiş binlerce fotoğrafı girdi olarak veriyoruz. Derin sinir ağı modeli; çok katmanlı bir yapıya ve milyarlarca parametreye sahip olduğu için yüksek sayıdaki veriyi kullanarak kedinin sadece şeklini değil, rengi, deseni, bulunduğu ortamı ve benzeri birçok bilgiyi birleştirerek kediyi tanımayı gerçekleştiriyor. Algoritmanın çıkardığı özellikler bazen bizim tanımlayabileceğimiz bazen ise tanımlayamadığımız özellikler olabiliyor."
Yapay zeka algoritması
Prof. Dr. Gözde Ünal, pekiştirmeli öğrenmenin, yapay zekanın kullandığı bir diğer öğrenme yöntemi olduğunu söyledi.
Pekiştirmeli öğrenme metodunda daha dinamik ve belirsiz ortamlarda, uzun vadede en iyi sonucu elde etmeye yönelik bir hesaplama yapıldığını vurgulayan Ünal, "Örneğin, satranç ve go oyunu oynayan algoritmalar buna örnek olarak gösterilebilir. Yapay zeka algoritması sürekli rastgele satranç oyunu oynuyor, bazen kazanıyor bazen de kaybediyor. Böylelikle uzun vadede hangi hamlelerin kendisini zafere ulaştıracağını anlamaya çalışıyor. Bu sadece oyunlarda değil, planlama ve strateji gerektiren her işte kullanılabiliyor" dedi.
Kaynak: AA